Что называется n факториалом

Что называется n факториалом

Произведение всех натуральных чисел от 1 до n включительно называется n-факториалом и обозначается как n! и равен

Эту формулу можно записать в следующем виде:

Factor от лат. сомножитель.

Примечание
Факториал определён только для целых неотрицательных чисел

Формула Стирлинга, для приближённого вычисления факториала:

Факториал вычисляется через Гамму-функцию по формуле:

$x! = Gamma left(
ight)$

$Gammaleft( x
ight) = left(
ight)!$

В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества <A,B,C,D> из 4-х элементов существует 4! = 24 перестановки:

Комбинаторная интерпретация факториала служит обоснованием тождества 0! = 1, т. к. пустое множество упорядочено единственным способом.

Связь с гамма-функцией

Факториал связан с гамма-функцией от целочисленного аргумента соотношением:

Таким образом, гамма-функцию рассматривают как обобщение факториала для положительных вещественных чисел.

Путём аналитического продолжения её также расширяют и на всю комплексную плоскость, исключая особые точки при

Более непосредственным обобщением факториала на множество вещественных (и комплексных) чисел является пи-функция, определяемая как

Поскольку то пи-функция натурального числа совпадает с его факториалом: Как факториал, пи-функция удовлетворяет рекурсивному соотношению

Формула Стирлинга

см. O-большое. Коэффициенты этого разложения дают последовательность A001163 в OEIS (числители) и последовательность A001164 в OEIS (знаменатели).

Во многих случаях для приближённого значения факториала достаточно рассматривать только главный член формулы Стирлинга:

При этом можно утверждать, что

Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Так, с помощью формулы Стирлинга легко подсчитать, что

  • 100! ≈ 9,33×10 157 ;
  • 1000! ≈ 4,02×10 2567 ;
  • 10 000! ≈ 2,85×10 35 659 .

Разложение на простые числа

Каждое простое число p входит в разложение n! на простые множители в степени

где произведение берётся по всем простым числам. Нетрудно видеть, что для всякого простого p большего n соответствующий множитель в произведении равен 1, а потому произведение можно брать лишь по простым p , не превосходящим n .

Другие свойства

  • Для натурального числа n

Обобщения

Двойной факториал

Двойной факториал числа n обозначается n!! и определяется как произведение всех натуральных чисел в отрезке [1, n ], имеющих ту же чётность что и n . Таким образом,

По определению полагают 0!! = 1.

Последовательность значений n!! начинается так:

Читайте также:  Противовирусные препараты для лечения гепатита с

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10 395, 46 080, 135 135, 645 120, 2 027 025, 10 321 920, 34 459 425, 185 794 560, 654 729 075, 3 715 891 200, 13 749 310 575, 81 749 606 400, 316 234 143 225, 1 961 990 553 600, 7 905 853 580 625, 51 011 754 393 600, … (последовательность A006882 в OEIS).

Кратный факториал

m -Кратный факториал числа n обозначается и определяется следующим образом:

Пусть число n представимо в виде где Тогда [1]

Двойной факториал является частным случаем m -кратного факториала для m = 2.

Кратный факториал связан с гамма-функцией следующим соотношением [2] :

Убывающий факториал

Убывающим факториалом (или неполным факториалом) называется выражение

Убывающий факториал даёт число размещений из n по k .

Возрастающий факториал

Возрастающим факториалом называется выражение

Праймориал или примориал

Праймориал или примориал (англ. primorial ) числа n обозначается n# и определяется как произведение всех простых чисел, не превышающих n. Например,

11# = 12# = 2 · 3 · 5 · 7 · 11 = 2310.

Последовательность праймориалов (включая ) начинается так:

1, 2, 6, 30, 210, 2310, 30 030, 510 510, 9 699 690, 223 092 870, 6 469 693 230, 200 560 490 130, 7 420 738 134 810, 304 250 263 527 210, 13 082 761 331 670 030, 614 889 782 588 491 410, 32 589 158 477 190 044 730, 1 922 760 350 154 212 639 070, … (последовательность A002110 в OEIS).

Суперфакториалы

Нейл Слоан и Саймон Плоуф (англ.) в 1995 году определили суперфакториал как произведение первых n факториалов. Согласно этому определению, суперфакториал четырёх равен

(поскольку устоявшегося обозначения нет, используется функциональное).

Последовательность суперфакториалов чисел n⩾0 начинается так:

1, 1, 2, 12, 288, 34 560, 24 883 200, … (последовательность A000178 в OEIS).

Идея была обобщена в 2000 году Генри Боттомли (англ.), что привело к гиперфакториалам (англ. Superduperfactorial ), которые являются произведением первых n суперфакториалов. Последовательность гиперфакториалов чисел n⩾0 начинается так:

1, 1, 2, 24, 6912, 238 878 720, 5 944 066 965 504 000, 125 411 328 000, 5 056 584 744 960 000, 1 834 933 472 251 084 800 000, 6 658 606 584 104 736 522 240 000 000, 265 790 267 296 391 946 810 949 632 000 000 000, 127 313 963 299 399 416 749 559 771 247 411 200 000 000 000 … (последовательность A055462 в OEIS)

Читайте также:  Что означает родинка на левом мизинце руки

Продолжая рекуррентно, можно определить факториал кратного уровня, или m -уровневый факториал числа n , как произведение первых n ( m −1)-уровневых факториалов, то есть

где для 0" border="0" /> и

Субфакториал

Субфакториал ! n определяется как количество беспорядков порядка n , то есть перестановок n -элементного множества без неподвижных точек.

Ссылки

См. также

Примечания

  1. «Энциклопедия для детей» Аванта+. Математика.
  2. wolframalpha.com.
Математические знаки

  • Как найти факториал числа
  • Как найти n в арифметической прогрессии
  • Как найти наибольшее из чисел

Чтобы найти факториал числа, необходимо вычислить произведение всех чисел, в промежутке от 1 до заданного числа. Общая формула выглядит таким образом:

n! = 1*2*…*n, где n – любое целое неотрицательное число. Факториал принято обозначать восклицательным знаком.

Второе свойство факториала называется рекурсией, а сам факториал – элементарной рекурсивной функцией. Рекурсивные функции часто применяются в теории алгоритмов и в написании компьютерных программ, поскольку многие алгоритмы и функции программирования имеют рекурсивную структуру.

Определить факториал большого числа можно по формуле Стирлинга, которая дает, однако, приближенное равенство, но с маленькой погрешностью. Полная формула выглядит следующим образом:

n! = (n/e)^n*√(2*π*n)*(1 + 1/(12*n) + 1/(288*n^2) + …)
ln (n!) = (n + 1/2)*ln n – n + ln √(2*π),

где e – основание натурального логарифма, число Эйлера, численное значение которого принято приблизительно равным 2,71828…; π – математическая константа, значение которой принято равным 3,14.

Широко распространено использование формулы Стирлинга в виде:

Убывающий факториал записывается следующим образом:
(n)_k = n!/(n — k)!

Возрастающий:
(n)^k = (n + k -1)!/(n — 1)!

Праймориал числа равен произведению простых чисел меньше самого числа и обозначается #, например:
12# = 2*3*5*7*11, очевидно, что 13# = 11# = 12#.

Суперфакториал равен произведению факториалов чисел на интервале от 1 до исходного числа, т.е.:
sf(n) = 1!*2!*3*…(n — 1)!*n!, например, sf(3) = 1!*2!*3! = 1*1*2*1*2*3 = 12.

«>

Ссылка на основную публикацию
Что значит прогноз фертильности
Карта мира по среднему количеству детей рождённых женщиной в течение жизни, с учётом средних показателей для женщин всех возрастов, данные...
Что вреднее томография или рентген
Для несведущего человека МРТ и рентген — безболезненные и безопасные для здоровья медицинские обследования, помогающие медикам поставить правильный диагноз и...
Что входит в диету 5 стола
В начале 20 века впервые влияние питания на здоровье человека тщательно изучил российский гастроэнтеролог Мануил Певзнер. В результате своих многолетних...
Что значит предлежащая часть головка
Головное предлежание плода – продольное положение плода с обращенной ко входу в малый таз головкой. В зависимости от предлежащей части...
Adblock detector